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Bird species richness and abundance: 

The effects of structural attributes, 

habitat complexity and tree diameter 

YEE SENG TAY 

Abstract 
Structurally complex habitats influence species richness and abundance through the provision of 

resources and microhabitats. This study examines the effects of structural attributes, habitat complexity 

(expressed as habitat complexity score) and tree diameter (expressed as standard deviation of diameter 

at breast height), on bird species richness and abundance. Projected foliage cover and diameter at breast 

height of the five closest trees and bird richness and abundance were recorded at the 30 survey sites 

within the Kioloa Coastal Campus. Regression analyses were conducted between the structural 

attributes and bird richness and abundance. A statistically significant correlation (α=0.05) was found 

between habitat complexity score and bird richness and abundance. A similar relationship was observed 

with the standard deviation of diameter at breast height. Land managers can employ these findings to 

enhance habitat restoration and rehabilitation projects, and to monitor biodiversity outcomes. 

Introduction 
Over the last two hundred years, 29 native Australian bird species have gone extinct (Szabo, Khwaja, 

Garnett, & Butchart, 2012) and this figure is forecasted to reach 39 by 2038 unless biodiversity and 

land management practices improve drastically (Geyle et al., 2018). The concept of habitat complexity, 

or the structural attributes of an environment (Smith, Johnston, & Clark, 2014), was first introduced in 

the classical work ‘On Bird Species Diversity’ by MacArthur and MacArthur (1961), who discovered 

a positive relationship between foliage height diversity and bird species diversity. Since then, the study 

of habitat complexity and its effects has proliferated the field of ecological science, with similar 

correlations being observed in the terrestrial (Gardner, Cabido, Valladares, & Diaz, 1995; Lawton, 

1983) and marine domains (Kelaher & Castilla, 2005; Luckhurst & Luckhurst, 1978). Researchers 

generally seek to identify structural attributes that affect species richness and abundance. They 

hypothesise that complex habitats offer more potential niches and reduce the possibility of niche overlap 

as compared to structurally simpler habitats (Klopfer & MacArthur, 1960, 1961). 



The ANU Undergraduate Research Journal 

 

 

 

 

124 

Integrating the ecological niche theory popularised by Hutchinson (1957) with birds, one can deduce 

that in structurally complex habitats, birds will have access to a variety of foraging sites from which 

specialisation can occur, enabling more species to be added into the existing assemblage (Karr, 1990). 

For example, the presence of ground litter and coarse woody debris in complex landscapes creates the 

microhabitats required to support the invertebrate community, an important source of food for many 

bird species (Nilsson, 1979). Apart from food, complex habitats increase the availability of nesting, 

perching and roosting sites, which are fundamental to birds, especially tree-hollow nesters. For 

example, Gibbons, Lindenmayer, Barry, and Tanton (2000) established that structural attributes such 

as tree diameter are associated with the occurrence of tree hollows and this may implicate hollow nesters 

such as the threatened superb parrot (Polytelis swainsonii) (Manning, Gibbons, Fischer, Oliver, & 

Lindenmayer, 2013). 

Tree diameter is also an important stand structural attribute that communicates the health of habitats, 

ecological functions and the process of ecological succession (Spies & Franklin, 1991), which may 

affect bird richness and abundance. Thus, complex habitats can increase the availability of resources, 

decreasing competition and resulting in increased bird richness and abundance (Seddon, Briggs, & 

Doyle, 2001, 2003). 

This paper aims to contribute to existing land management practices and bird conservation efforts by 

identifying key relationships between structural attributes and bird richness and abundance. 

Stakeholders can employ these findings to facilitate land restoration projects, habitat rehabilitation and 

monitoring. The study methods and findings discussed below explore the effects of structural attributes 

on bird species richness and abundance. In line with the previous observations, it is hypothesised that 

bird species richness and abundance increase as habitats become more complex. 

Methods 

Study area 

The study was carried out at the Kioloa Coastal Campus (KCC) of ANU. KCC is located in the south-

eastern coastal district of Shoalhaven, New South Wales (35°32'S; 150°22'E). It encompasses an area 

of 348 hectares, which borders the foothills of the Murramarang Ranges to the west, the mean high-

water mark of the beaches to the east, private lands to the north and Crown land such as the 

Murramarang National Park to the south (Figure 1). 
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Figure 1: Annotated Map of KCC. 

Source: ANU Facilities & Services Division, 2017. 

KCC receives a mean annual rainfall of 1,110 mm and experiences mean annual temperature of 13.2°C 

to 20.6°C (BOM, 2017). Elevation within KCC ranges from 0 to 100 metres above sea level. KCC can 

be categorised into three major vegetation zones, coastal, agricultural and forest (Figure 1), which 

reflects on the land use history of the property (Caton, 2007). This study focuses on agricultural and 

forest zones. The former comprises of cleared pastures and remnant vegetation along creeks and is 

occupied by tussock grass (Poa sp.) and grasses such as ryegrass (Lolium multiflorum) and kikuyu 

(Pennisetum clandestinum). The latter can be further classified into regrowth and old growth areas. 

The regrowth area comprises of cleared grassy woodlands, with spotted gums (Corymbia maculata), 

prickly beard-heath (Leucopogon juniperinus) and orange thorn (Citriobatus pauciflorus). The old 

growth area comprises of southern lowland wet sclerophyll forest and southern warm temperate 

rainforest. Spotted gums (C. maculata), blackbutt (Eucalyptus pilularis), bangalays (E. botryoides) and 

stringybarks (E. spp.) occupy the sclerophyll forest and bolwarras (Eupomatia laurina), lilly pillies 

(Syzygium smithii) and tree ferns (Dicksonia antarctica and Cyathea australis) occupy the rainforest. 
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Bird survey 

This study employed a total of 30 survey sites within the KCC and the sites were allocated equally 

among the agricultural (pasture) and forest (regrowth and old growth) zones (Figure 2). 

 

Figure 2: Satellite image of KCC and the location of the 30 survey sites. 

Source: Esri, 2017. 

Bird surveys were conducted in the early hours of the day following sunrise, between 0700H to 1000H, 

as bird activity peaks during this period and gradually declines as the morning progresses, as suggested 

by Robbins (1981). The 30 sites were equally divided among six groups and a trained 

expert/ornithologist was assigned to each group. The bird surveys were conducted using the single visit 

point count method as outlined by Laiolo (2002), where all birds seen or heard within a 50-metre radius 

of the site were recorded. Overflying birds that were passing by were not considered to be using the site 

and they were not recorded in our study, as suggested by Laiolo (2002). Each site was sampled for five 

minutes in order to achieve maximum efficiency when recording the number of species per unit effort, 

as suggested by WP Smith et al. (1993). The total number of birds seen or heard was recorded as bird 

abundance and the total number of different bird species observed was recorded as species richness. 

Vegetation structure survey 

At each site, the dominant species at each level of the stratum (upper, middle and ground) were 

recorded. The diameter at breast height (DBH) of the five nearest trees was measured using a diameter 

tape. Breast height is defined as 1.30 metres above the ground (Brack & Wood, 1998). Subsequently, a 

100-metre transect was established across the site using the measuring tape. The bearing of the transect 

was chosen in a direction that was representative of the site’s vegetation structure. The point intercept 

method, which involves the densitometer, was used to determine the presence or absence of foliage 

cover in the upper and mid stratum, as outlined by Hnatiuk, Thackway, and Walker (2010). 
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The presence or absence of foliage cover (ground) was conducted in a rudimentary manner but it 

adhered closely to the point intercept method, where the surveyor’s toe on the right boot was used as 

the intercept point. Foliage cover (ground) consisted of grass tussocks (>10 cm in height), fine 

herbaceous (<10 cm in height), litter (detached plant material), rock, bare ground and coarse woody 

debris (>5 cm in diameter). A total of 50 observations were made along the transect, at intervals of 

2.00 metres and the projected foliage cover was obtained for each component by dividing the sum of 

present counts by 50 (total number of observations) and multiplying it by 100 (conversion to 

percentages). 

Data analysis 

With respect to the research question and hypothesis, the dependent variables in this study are defined 

as the total number of bird species (richness) and the total number of birds (abundance). The 

independent variables are defined as the standard deviation of DBH of the five closest trees (SD.DBH) 

and habitat complexity, in terms of the habitat complexity score (HCS). Microsoft Excel was used to 

perform the bivariate regression analysis between the dependent and independent variables, to 

determine if a statistically significant relationship exists between the structural attributes and bird 

species richness and abundance. 

Tree DBH data collected at each site was processed through Microsoft Excel using the standard 

deviation function to obtain SD.DBH. The data was quantified and analysed in terms of SD.DBH as it 

reflected the logging and disturbance history of the site (McElhinny, Gibbons, & Brack, 2006) and 

serves as an indicative measure of biological diversity at the site (Buongiorno, Dahir, Lu, & Lin, 1994). 

The HCS for each site was obtained by inputting the projecting foliage cover for each component into 

the scoring matrix below (Table 1). 

Table 1: The components of the habitat complexity score and method of scoring 

 Score 0 Score 1 Score 2 Score 3 Comments 

Component 0–10% 10–20% 20–50% >50%  

Upper stratum 
(% cover) 

     

Mid stratum 
(% cover) 

     

Ground cover 
(% cover)* 

     

Litter cover 
(% cover) 

     

Component 0–5% 5–10% 10–15% >15%  

Rock (% cover)      

Coarse wood 
debris (% cover) 
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Bare ground 
(% cover) 

     

Litter cover 
(% cover) 

     

Total      Sum** = 

*Comprises of projected foliage cover data of grass tussocks and fine herbaceous. 

**Refers to the sum of the total score for each scoring column (0–3). 

Source: Table created by the author, based on Catling and Burt (1995) and Watson, Freudenberger, and Paull 

(2001). 

The scoring matrix is based on Catling and Burt (1995) and Watson, Freudenberger, and Paull (2001) 

and has been adapted for this study. The modifications consisted of assigning new per cent cover values 

for each score under rocks, coarse woody debris and bare ground, to capture a greater spread of the data 

collected. Additionally, the ground cover component in the matrix includes both grass tussock and fine 

herbaceous projected foliage cover data. 

Results 

Bird species richness and abundance 

A total of 645 individual birds belonging to 44 species were recorded during the bird survey. Bird 

species richness ranged 0–9 species at the pasture sites (2.90 ± 1.02; mean ± standard error), 7–18 at 

the regrowth sites (12.50 ± 1.01) and 10–16 at the old growth sites (12.70 ± 0.68). Bird species 

abundance ranged 0–22 at the pasture sites (7.40 ± 2.65), 15–55 at regrowth sites (30.60 ± 3.39) and 

22–38 at the old growth sites (26.5 ± 1.74). 

Vegetation structure 

Tree DBH ranged from 5.00 cm to 72.00 cm at the regrowth sites (28.00 cm ± 2.57) and from 3.50 cm 

to 350.00 cm at old growth sites (63.34 cm ± 7.50). No trees were detected at the pasture sites. The 

range and mean projected foliage cover for each habitat type is presented in Table 2. 

Table 2: Range and mean of projected foliage cover for each component for each 

habitat type 

Habitat type Upper 

stratum, 
% 

Mid 

stratum, 
% 

Ground 

cover, 
% 

Litter 

cover, 
% 

Rock, % Course 

woody 
debris, % 

Bare ground, % 

Pasture 0 0 84%–100% 
87% ± 
8.76 

8%–16% 
4% ± 1.91 

0%–2% 
0% ± 

0%–2% 
0% ± 

0%–10% 
1% ± 0.99 

Regrowth 54%–96% 
74% ± 
3.79 

6%–48% 
25% ± 
3.70 
 

4%–48% 
31% ± 
4.84 

30%–90% 
65% ± 
5.82 
 

0%–26% 
5% ± 2.59 

0%–6% 
3% ± 0.82 

0%–2% 
1% ± 0.33 
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Old growth 22%–92% 
67% ± 
6.08 

14%–90% 
42% ± 
7.31 

0%–64% 
17% ± 
6.72 

2%–94% 
67% ± 
9.13 

0%–14% 
2% ± 1.51 

0%–18% 
8% ± 1.81 

0%–14% 
3% ± 1.34 

Source: Author’s summary of fieldwork data. 

The dominant species at the ground stratum was identified as kikuyu (P. clandestinum) for pasture sites, 

cogon grass (Imperata cylindrica) for regrowth sites and austral bracken (Pteridium esculentum) for 

old growth sites. The dominant species at the middle stratum was identified as native blackthorn 

(Bursaria spinosa) at the regrowth sites and wild yellow jasmine (Pittosporum revolutum) for old 

growth sites. The dominant species at the upper stratum was identified as spotted gums (C. maculata) 

for both regrowth and old growth sites. 

Bivariate regression analysis, richness 

A significant positive correlation was observed (R2 = 0.62, p = <0.001) between HCS and the total 

number of bird species (richness) (Table 3). A similar relationship was observed (R2 = 0.39, p = <0.001) 

between SD.DBH and the total number of bird species (richness) (Table 3). 

Table 3: Results from linear regression analysis for predicting bird species richness 

Independent 

variable 

Coefficient Standard 

error 

Confidence 

interval 

(α=0.05) 

R2 F t-value p-value 

HCS 1.21 0.18 0.84–1.57 0.62 46.08 6.79 <0.001 

SD.DBH 0.13 0.03 
 

0.07–0.20 0.39 
 

17.81 4.22 <0.001 

Source: Author’s summary of fieldwork data. 

Both relationships are illustrated by the graphs in Figures 3 and 4, respectively. 
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Figure 3: Bivariate linear regression analysis of total number of bird species (richness) 

with HCS. 

Source: Author’s summary of fieldwork data. 

 

Figure 4: Bivariate linear regression analysis of the total number of bird species 

(richness) with SD.DBH. 

Source: Author’s summary of fieldwork data. 

Bivariate regression analysis, abundance 

A significant positive correlation was observed (R2 = 0.48, p = <0.001) between HCS and the total 

number of birds (abundance) (Table 4). A similar relationship was observed (R2 = 0.14, p = 0.043) 

between SD.DBH and the total number of birds (abundance) (Table 4). 

Table 4: Results from linear regression analysis for predicting bird species abundance 

Independent 
variable 

Coefficient Standard 
error 

Confidence 
interval 

(α=0.05) 

R2 F t-value p-value 

HCS 2.57 0.50 1.54–3.60 0.48 26.16 5.11 <0.001 

SD.DBH 0.72 0.34 
 

0.002–1.41 0.14 
 

4.50 2.12 0.0043 

Source: Author’s summary of fieldwork data. 

Both relationships are illustrated by the graphs in Figures 5 and 6, respectively. 
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Figure 5: Bivariate linear regression analysis of the total number of birds (abundance) 

with the HCS. 

Source: Author’s summary of fieldwork data. 

 

Figure 6: Bivariate linear regression analysis of the total number of birds (abundance) 

with the variation in DBH of the five closest trees. 

Source: Author’s summary of fieldwork data. 

Discussion 
This study investigated the relationship between structural attributes and bird species richness and 

abundance. Results supported the hypothesis that bird richness and abundance increase as habitats 

become more complex. That is, a statistically significant correlation was found between HCS and bird 

richness and abundance, and a similar relationship was observed with SD.DBH. 
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Bird richness and abundance with HCS 

The regression analysis yielded a significant correlation between habitat complexity, expressed in terms 

of HCS, and bird species richness and abundance. Based on the results, 62 per cent and 48 per cent of 

the variance in richness and abundance respectively can be accounted for by habitat complexity. This 

implies that bird species richness and abundance increase in proportion to habitat complexity. This 

relationship can be explained by structural attributes found within each survey site. The absence of trees 

within pasture sites effectively limits the richness and abundance of birds as there are no incentives for 

hollow-nesting birds to be present, since the habitat offers no nesting sites (Newton, 1994). 

The absence of trees also meant that the in-situ production of coarse woody debris would be non-

existent and litter would be limited to wind transportation and ground production, preventing the 

formation of suitable microhabitats that would allow invertebrates to thrive (Berg et al., 1994), 

disincentivising insectivorous birds. The absence of upper and mid-canopy cover in the pasture sites 

may generate unsuitable temperature conditions, negatively affecting bird species richness (Pearman, 

2002). Importantly, the low structural complexity of the pasture sites, relative to regrowth and old 

growth, limits the availability of ecological niches for birds to specialise in, increasing competition and 

restricting the realised niche to the most adept (Keller & Lloyd, 1994). 

Conversely, in the regrowth and old growth sites, the increased structural complexity facilitates the 

division of habitat resources among different bird species (Hurlbert, 2004). This reduces competition 

and allows for niche specialisation, enabling greater richness (Van Den Meersschaut & Vandekerkhove, 

2000). 

Bird richness and abundance with SD.DBH 

Based on the regression analysis, 39 per cent and 14 per cent of the variance in richness and abundance 

respectively can be accounted for by SD.DBH. This implies that bird species richness and abundance 

increase in habitats where both old (larger DBH value) and young (smaller DBH value) trees coexist. 

Older trees are more likely to have experienced stochastic heat stress events such as bushfires, which 

promotes the process of hollow formation in addition to natural formation with age (Adkins, 2006). 

Younger trees are also not exempted from such events and can develop hollows as a result of fire 

(Gibbons et al., 2000). Thus, increased hollow abundance can be expected in trees of larger diameter 

(Gibbons et al., 2000; Lindenmayer, Cunningham, Donnelly, Tanton, & Nix, 1993). 

The presence of hollows does not equate to greater bird species richness or abundance as birds are not 

the only fauna that use hollows and birds prefer hollows with entrances similar to the size of their body 

width (Goldingay, 2009). The resulting abundance in tree hollows of varying sizes due to the presence 

of older and younger trees increases the likelihood of hollow suitability for birds. This reduces 
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competition among birds for nesting sites, increasing breeding density and promoting greater bird 

richness and abundance (Newton, 1994). 

Most importantly, SD.DBH reflects on the assortment of microhabitats present at the stand (Acker, 

Sabin, Ganio, & McKee, 1998; Van Den Meersschaut & Vandekerkhove, 2000). The variation observed 

in the old growth forests, where both young and old trees were observed to coexist, also suggests a rich 

habitat with a variety of niches and resources (Temple, Mossman, & Ambuel, 1979). This allows for 

specialisation and reduces niche overlap, decreasing competition and relaxing the realised niche. 

Limitation of study 

Regarding the experimental design of this study, the location of some survey sites (Figure 2) appears to 

have been placed at regular intervals along Moores Road for the purpose of accessibility. This may 

introduce additional variables into our data, as the road is a form of human interference and has changed 

the landscape around it. The survey sites can be improved through randomised allocation within the 

forest zone and a buffer can be established to prevent a site from being allocated within a certain distance 

from the road. 

Additionally, the collection of the projected foliage cover data was conducted in a subjective manner, 

where some groups established transect in a bearing that prioritised accessibility over the accurate 

representation of the site. This issue can be mitigated by ensuring that surveyors are dressed and geared 

properly for the job, to reduce and remove any hesitation regarding fieldwork. Geographic 

Informational Systems (GIS) can also be used to remotely sense certain components of the projected 

foliage cover, to improve the replicability and the precision of data collected. 

Bird species richness and abundance may not have been captured accurately at some of the survey sites 

due to the way surveys were conducted. Bird activity declines as the morning progresses, as suggested 

by Robbins (1981) and this would mean that the bird surveys conducted by groups for the last few sites 

would reflect a lower bird species richness and abundance. This issue can be resolved by ensuring that 

the survey team is prepared before sunrise so that survey can be conducted within the golden hour of 

after sunrise. The number of bird surveys conducted can also be increased to reduce the effect of natural 

variation, increasing precision, and the flow of the sites to survey can be randomised to reduce the effect 

imposed by the time of day on the bird data. 

Implications 
This study has established the effects of structural attributes, habitat complexity and tree diameter on 

bird species richness and abundance. Land managers and conservationists can employ the findings of 

this study to better manage their landscape, such as retaining mature hollow-bearing trees during timber 

extraction or prescribing regular fires to promote hollow formation. Bird habitats can also be 
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deliberately restored or enhanced by tweaking the settings of structural attribute components, such as 

coarse woody debris and litter cover, which support the invertebrates that most birds feed on. 

Alternatively, trees with differing growth rates can be planted to create variability in tree diameter, 

which enhances microhabitat diversity and resource availability. Importantly, this study highlights the 

importance of an evidence-based management approach in promoting positive biodiversity outcomes, 

and the value of future research in stemming the mass decline of Australia’s biodiversity. 
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