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Abstract

In this paper, we examine one of the most well known of special relativity’s apparent
paradoxes: the twin’s paradox. It is regularly claimed that because this paradox contains
accelerating frames that it does not belong in the domain of special relativity but must be
solved via general relativity. We will demonstrate that this is not the case by considering
to solutions to the paradox which only involve flat Minkowski spacetime. The first is the
Doppler shift analysis which considers what each observer actually sees according to the
relativistic Doppler equation which finds that both observers agree the travelling twin is
younger. Then we solve it analytically by considering Rindler coordinates which quantify
accelerating frames in special relativity. This will give us a numeric result which shows
that the Earthbound twin ages the required amount during the turnaround according to
the accelerated frame. Thus, by considering the appropriate framework, we demonstrate
there is no paradox involved at all.

I. Introduction
The twin’s paradox is probably the most well known of special relativity’s
‘paradoxes’ and has continued to confuse fledgeling physicists since it was first
conceived by Einstein, despite the fact it was solved almost as soon as it was
constructed. The large majority of analyses, however, simply point out the most
obvious logical flaw andmove onwithout taking any time to examine the subtleties
of the problem. In fact, the twin’s paradox demonstrates many of the strange
properties that come with a relativistic outlook. In this paper, we will examine
the problem and solve it in several different ways. In doing so, I hope that the
reader will be able to see how the varied pieces of special relativity come together
cohesively to explain the observed phenomena.

II. The Twin’s Paradox
Here’s the problem. Consider two twins, Adelle and Chris. Adelle is adventurous
and decides to jump on board the interstellar spaceshipHMS Joe is Greatwhere she
will fly to a new colony around Tau Ceti, a star that is 12 light years away. The
journey will be made at 60% of the speed of light which corresponds to a gamma
factor of γ(0.6c) = 1.25. Adelle waves goodbye, jets off to Tau Ceti, turns around
and comes home at the same speed reuniting with her brother on Earth. On her
return, there’s considerable confusion however. Chris has seenAdelle travel at 0.6c
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relative to Earth the entire time and thus undergoing time dilation by the gamma 
factor of 1.25; he thinks the 40-year journey has taken her 32 years. But because 
velocity is relative, Adelle has seen Chris moving at 0.6c so during her 32-year 
journey (length contraction has made the trip shorter for her, she sees his clock 
moving at 80% the rate of hers so Chris must be the younger one by 6.4 years!
Now both twins think the other is younger — is this a paradox?

Well fortunately enough, no. This analysis has assumed symmetry in the problem 
when there is clear asymmetry. To return to Earth, Adelle has to undergo 
considerable acceleration in the Tau Ceti system which means she no longer 
occupies an inertial frame of reference. Chris felt no such acceleration. Therein 
lies the asymmetry that nullifies the paradox because time dilation is applied 
incorrectly to a non-inertial reference frame.

Many explanations of the paradox will simply stop here and say something along 
the lines of ‘special relativity can only handle inertial reference frames. General 
relativity is required to deal with this accelerating frame, so we won’t even bother’. 
This is not true however — special relativity can deal with accelerating frames. The 
difference is that general relativity treats all frames on equal footing whilst special 
relativity treats inertial and non-inertial frames differently. The only sense that 
special relativity is an approximation is that the generation of gravitational waves 
from an accelerating body are ignored.1 However, in these problems, there are 
many more significant effects of acceleration that are considered negligible so this 
isn’t really a problem.

The correct answer to the original question of who is younger is that Adelle is 
younger by the associated gamma factor. We will consider two solutions to the 
problem to explain this ageing difference, each coming from a different perspective. 
In the Doppler effect analysis, we will consider exactly what each observer sees and 
show how the relativistic Doppler effect accounts for the asymmetry and correctly 
predicts both ages when Adelle returns to Earth. Secondly, we will consider the 
hyperbolic motion of a uniformly accelerated frame and show that this predicts 
that Chris actually ages by the required factor during the acceleration of Adelle’s 
turnaround.

III. The Doppler Effect Analysis
In this analysis, we will consider exactly what each observer sees throughout 
the journey. Suppose we equip both Adelle and Chris with very powerful 
telescopes and flashing clocks such that in each clock’s proper time, it emits a 
flash of light each second. The relativistic Doppler effect discussed by Rindler2

1 Philip Gibbs, ‘Can special relativity Handle Acceleration?’ (1996, The Original Usenet
Physics FAQ) <http://math.ucr.edu/home/baez/physics/Relativity/SR/acceleration.html>. 

2 Wolfgang Rindler, Relativity: Special, General, and Cosmological (Oxford University Press,
2006) 78–81.
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claims that
ν0
νS

=

√
1− β

1 + β
(1)

where ν0 is the frequency observed, νS is the frequency of the source and β = v/c
is the velocity as a fraction of the speed of light assuming recession is positive. In
the case we are considering, we’ve set νS = 1 Hz in our flashing clocks. For this 
analysis, we’ll consider the case in which the acceleration is instantaneous and/or 
negligible. Although this is unrealistic, it is a limiting case of the theory and hence 
should produce correct predictions.3

So let’s consider what Chris observes. As Adelle travels away from him, the 
frequency of her flashing clock on the outbound leg, as given by the relativistic 
Doppler equation, is νO = 0.5 Hz. He knows the outbound journey takes 16 years
of Adelle’s time at the speed she is going, but because of the information rate, Chris 
won’t see Adelle reach Tau Ceti until his clock reads τO = 32 years. However,
on the return journey when Adelle’s velocity is reversed, Chris will observe her 
flashing clock with a frequency of νI = 2. The time he experiences until Adelle 
returns is then τI = 8 years. Hence when Adelle returns to Earth in 32 years, 
Chris will have aged 40 years predicting that she aged exactly 80% the time he 
has.
Now let’s consider what Adelle observes. Chris travels away from her so again,
the frequency observed is νO = 0.5 Hz. The moment of turnaround for Adelle
is 16 years into her 32-year journey. Hence she will also observe Chris to have 
aged τO = 8 years at the time of turnaround. However, after the turnaround she 
observes a frequency of νI = 2 for 16 years, so the time that elapses for Chris on
her return journey is τI = 32 years. Thus Adelle correctly observes that Chris has 
aged 40 years whilst she has only aged 32.
So by considering exactly what each observer sees via the relativistic Doppler 
effect, the paradox has evaporated and both observers agree that Adelle is 
younger.4 Furthermore, we have achieved this without ever considering 
acceleration. There is symmetry on both the outbound and inbound journeys; both 
twins observe the same red- and blue-shift factors. The fundamental asymmetry 
that allowed the correct conclusion is that the transition from red- to blue-shift 
occurred at Adelle’s turnaround. She shares equal observing time for both the red-
and blue-shifts. However, Chris doesn’t see Adelle turn around until she’s almost 
home and thus the increased frequency from the blue-shift can’t catch up, giving
the desired result.5 This result is particularly well demonstrated by Figure 1 where
the signal that Adelle observes is seen in Figure 1a whilst the signal Chris receives
is seen in Figure 1b.
3 Michael Weiss, ‘The Twin Paradox.’ (The Original Usenet Physics FAQ)

<http://math.ucr.edu/home/baez/physics/Relativity/SR/TwinParadox/twin_paradox.html>. 
4 Paul Davies, About Time (Simon & Schuster, 1995) 59–65.
5 Weiss, above n 3.
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(a) Adelle receives the signal
from Chris’ flashing clock.

(b) Chris receives the signal
from Adelle’s flashing clock.

Figure 1: With Adelle travelling at 0.6c, the spacetime diagram shows the flashes of light received by both
Adelle and Chris throughout the journey. As evident, Adelle sees Chris age 40 years whilst Chris sees
Adelle age 32 years.6

The sceptic will say at this point ‘well hang on, regardless of what they observe,
couldn’t the twins deduce that the other’s clock is running slower than theirs? How
can you have a difference inwhat they theoretically deduce andwhat they actually
observe?’7 This is the Time Gap Objection and it says that if Adelle calculates
rather than observes, she will deduce that Chris magically ages 6 years during the
instantaneous turnaround.

This isn’t really a problembecause that deduction is a result of her changing inertial
reference frames. The inbound reference frame says the turnaround happens at
t = 12.8 years for Chris whilst the outbound reference frame says the turnaround
happens at t = 27.2 years. The apparent time gap of 14.4 years is simply an
accounting error induced by changing inertial reference frames.8 We will show

6 SlidePlayer, ‘Slide showNotes_06.ppt’ (2009) <http://slideplayer.com/slide/5056347/#>.
7 Davies, above n 4.
8 Weiss, above n 3.
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in the final section of the paper that this accounting error is predicted exactly by
the acceleration Adelle undergoes.
Now at this point, youmight be thinking ‘I like how the twins’ observations match
up and that the deductions about the time dilation fit together coherently, but it
still seems like some magic happens during the acceleration.’ Let us deal with that
acceleration head on.

IV. Hyperbolic Motion
Special relativity can deal with any problem occurring in flat Minkowski
spacetime. In this section we will consider uniform acceleration as it is
mathematicallymuch simpler. However, any type of acceleration can be dealt with
by the same framework.
Given a position 4-vector r, we define the 4-velocity to be u = dr/dτ and
correspondingly the 4-acceleration to be a = du/dτ where τ is the proper time.
Consider two results whichwe have proved in Assignment 8; u2 = c2 and a·u = 0.
Now consider some observer who initially begins in an inertial frame and then
feels a constant acceleration g in the x1 direction and for the remaining spacelike
components, assume x2 = x3 = 0. Then the equations of motion for the observer
naturally are

dt
dτ = u0,

dx1

dτ = u1;

du0

dτ = a0,
du1

dτ = a1.

(2)

Furthermore from the results of Assignment 8, we have
uµu

µ = c2

uµa
µ = u0a0 − u1a1 = 0

aµa
µ = g2.

(3)

Solving these algebraic equations for the acceleration, we produce two linear
differential equations

a0 =
du0

dτ =
gu1

c
, a1 =

du1

dτ =
gu0

c
(4)

which can be solved immediately9. Choosing an appropriate origin, the solutions
are

ct =
c2

g
sinh

(gτ
c

)
, x1 =

c2

g
cosh

(gτ
c

)
. (5)

These equations of motion are termed hyperbolic motion because the resulting
worldline is the hyperbola x2

1 − (ct)2 = (c2/g)2 in a spacetime diagram,10 as
9 Charles Misner, Kip Thorne, and JohnWheeler, Gravitation (W.H. Freeman and Company,

1973) 165–73.
10 Ibid.
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demonstrated in Figure 2. Note that only the positive half of the parabola is shown
because that is what the parametric plot considers. If the integration constants
and origin had been chosen otherwise, the negative half could have been the one
selected. Thus we have the position 4-vector of a uniformly accelerating observer
in terms of their initial rest frame.

Despite the fact that this derivation was very simple, it demonstrates all of the
crucial principles to explaining why the acceleration causes Chris to age. Consider
two timelike events A and Bwhich occur at times tA and tB in the inertial reference
such that tB − tA = ∆t. Then the path between the two events undergoing a
uniform acceleration g occupies a hyperbolic path and the proper time for that
observer is given by ∆τ = c/g sinh−1

(g∆t/c) from Equation (5). Producing a
plot of the proper time as a function of g yields Figure 3. As is clearly evident, any
accelerationwill cause a decrease in the proper time that gets largerwith increasing
acceleration. That is, of all the timelike paths between events A and B, the one with
the longest lapse in proper time is the unaccelerated one.11

This demonstrates that if an observer undergoes acceleration, their proper time
will be smaller than when compared to the stationary observer. Chris feels no
acceleration so he can correctly deduce Adelle’s age on her return just from time
dilation. However, Adelle underwent acceleration during her turnaround, so she
has to account for the fact that Chris’s clock will run faster than hers during the
acceleration. Let’s quantitatively prove this.

V. Rindler Coordinates
Whilst hyperbolic motion neatly solved the conceptual elements of the twin’s
paradox by showing us that the unaccelerated frame always has the longest proper
time lapse between two events, it does not calculate a numerical solution to
the originally posed problem. The parametrisations given in Equation (5) have
assumed convenient choices of origin and initial conditions to yield the simple
result. This will not work for our case because Adelle undergoes her acceleration
far away from the origin at very specific initial conditions. Hence we have to
generalise our concept of hyperbolic motion with Rindler coordinates.12

Consider a reference framewith coordinates (t, x)undergoinguniformacceleration
and an associated inertial frame with coordinates (T,X) (note that (t, x) is simply
shorthand for the full 4-vector (t, x, y, z) because y = Y and z = Z so are not of
interest). Rindler coordinates are the coordinates (x, t) and are interesting because
they are associated with the accelerating frame; for more on Rindler coordinates,
refer to Appendix A. The transformations between these two coordinate systems

11 Ibid.
12 Benjamin Knorr, ‘Uniform Relativistic Acceleration’ (2010) <http://www.physik.uni-

leipzig.de/ schiller/ed10/Uniform relativistic acceleration.pdf>.
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Figure 2: The worldline of a uniformly accelerating observer given by x2
1 − (ct)2 = (c2/g)2. 

The steepness of the curve depends on the value of acceleration g. Smaller accelerations are to the right.
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Figure 3: The proper time∆τ of a uniformly accelerated observer as a function of acceleration g assuming
∆t = c = 1.

are

X =

(
x+

c2

g

)
sinh

(
g(t− t0)

c

)
+X0 −

c2

g

cT =

(
x+

c2

g

)
cosh

(
g(t− t0)

c

)
+ cT0

(6)

and the associated inverse transformations are

x =

√(
X −X0 +

c2

g

)2

− c2(T − T0)2 −
c2

a

ct =
c2

g
tanh−1

(
c(T − T0)

X −X0 +
c2

g

)
+ ct0

(7)

where x is the spatial offset of the origin of the accelerated frame with respect to
the inertial frame, t0 is the time offset, and X0 is the spatial offset of the moving
particle.13 Equation (6) is a generalisation of Equation (5) and accounts for not only
spatial separations but also temporal separations of the accelerated frames.

13 Ibid.
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According to Grøn,14 Iorio15 and Knorr,16 Equation (7) gives rise to a line element
of

ds2 =

(
1 +

gX

c2

)2

c2dt2 − dx2 − dy2 − dz2. (8)

The general physical interpretation of a line element in a timelike interval is that
it is the proper time of an observer following the worldline of two nearby events
separated by (dt, dx, dy, dz).17 That is ds2 = c2dτ2. Thus we conclude that for an
inertial observer sitting at a distance X = h from the accelerating observer, the
observed proper time of the observer is

∆τ =

(
1 +

gh

c2

)
∆t. (9)

VI. Solving the Paradox
Thus we have all the tools required to analytically solve the twin’s paradox with
special relativistic acceleration. We have analysed hyperbolic motion to show that
acceleration causes a decrease in the proper time of the accelerated observer and
invokedRindler coordinates to fully quantify that for an observer of the accelerated
motion.
Now let’s consider the original problem. To simplify the analysis, we will assume
that g → ∞ and because this is a limiting case, the analysis should still hold up.18
Let’s consider what Chris deduces. He sees Adelle travel at 0.6c to Tau Ceti 12 light
years away, instantaneously turns around and comes back. The journey takes 40
years of his time, but due to time dilation, Adelle only ages 32 years.
Now let’s consider what Adelle sees. During the 9.6 ly flight which takes her 16
years, she seesChris age only 12.8 years due to timedilation (similarly on the return
journey). Her turnaround, in terms of the inertial frame, will take her ∆t = 2v/g.
Because she views herself at rest, she sees Chris as the one accelerating and predicts
he will age by

∆τ =

(
1 +

gh

c

)
2v

g
=

2v

g
+

2hv

c2
. (10)

In the limit that g → ∞, this simplifies to ∆τ = 2hv/c2. Since we have h = 12 ly
and v = 0.6c, we find that Chris ages ∆τ = 14.4 years during the turnaround.
Combining this with the 25.6 time dilated years she sees during the journey, she
14 Øyvind Grøn, ‘The twin paradox in the theory of relativity’ (2006) 27 European Journal of

Physics 885–9.
15 Lorenzo Iorio, ‘An analytical treatment of the Clock Paradox in the

framework of the Special and General Theories of Relativity’ (2004, ArXiv.org)
<https://arxiv.org/abs/physics/0405038>.

16 Knorr, above n 12.
17 Grøn, above n 14.
18 Weiss, above n 3.
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predicts Chris will be 40 years old on this return, precisely consistent with what he
experiences.
Thus we have quantitatively solved the paradox! For small acceleration windows
such that we can assume h to be constant, the proper time experienced by the
inertial observer can be calculated from the accelerated frame. This was only
possible because of the line element deduced from the Rindler coordinates which
in turn were deduced from the hyperbolic motion.

VII. Conclusion
In this paper, we have analysed the twin’s paradox from several angles. In
most physical cases, we considered the limiting case of infinite acceleration and
instantaneous turnaround to simplify the arithmetic. First, we considered the
Doppler shift analysis which showed that if we consider exactly what each
observer sees, then there is no paradox at all and both observers agree that Adelle
is younger by the appropriate time dilated factor, 8 years in our example. This
is reassuring because the observers cannot see an instantaneous turnaround so if
they did not agree, the following physical arguments would not work.
Adelle and Chris are smart physicists, however, and we showed that as they are
aware of the Doppler shift, they can calculate around it and still deduce that there
should be a paradox. That’s when we appealed to uniform acceleration to deal
with the asymmetry in the problem. We found that an accelerated observer will
always experience less proper time than an inertial observer and hence as Adelle
undergoes the acceleration of the turnaround, she will see Chris age faster than
her. However, because the analysis was simple, we couldn’t quantify this ageing.
Hence we referred to Rindler coordinates and the associated line element. Whilst
a direct proof is beyond the scope of this paper, they allowed us to deduce the
proper time experienced by the inertial observer whilst the accelerated observer
undergoes the acceleration. This allowed us to show that if Adelle appropriately
accounts for her acceleration, she will see Chris age exactly the required amount to
deduce that he will be 8 years older on her return.
Thus we have numerically solved the twin’s paradox and shown it is no paradox
at all. Furthermore, we have achieved this without the need to refer to general
relativity and demonstrated that because this is a Minkowski spacetime problem,
special relativity can handle it.

A. Appendix: Rindler coordinates
Rindler coordinates arise as one possible set of coordinates to describe an
accelerating frame of reference in Special Relativity. The transformations from
an inertial reference frame described by (T,X, Y, Z) to a uniformly accelerating
frame described by (t, x, y, z) are given by Equations (6) and (7). The Minkowski
line element is given by Equation (8).
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This transformation is only valid inside the Rindler wedgewhich is the space given
by 0 < X < ∞, −X < T < X .19 The reason for this is because a Rindler observer
experiences an event horizon along the worldline T = ±X ,20 any point outside of
this quadrant is inaccessible to the accelerating and hence they cannot see past it.
The Rindler wedge for g = 1 is seen in Figure 4.
Figure 4 shows hyperbolic lines passing through different x values. For observers
on these lines to maintain equal distance between themselves and others on
the line, they must experience uniform acceleration of varying magnitudes.21
That is for an observer who is spatially ahead of the observer who occupies
x = 1, to maintain equal distance in Rindler coordinates he must experience a
lesser acceleration. Similarly, those who are spatially behind must have greater
acceleration; the observer occupying x = 0 has g = ∞. Any observer could define
the Rindler coordinate as within the coordinate system, all possible acceleration
values occupy a worldline. By convention, g = 1 is chosen for simplicity.22

Rindler coordinates are difficult in several regimes. Firstly they give rise to
different physical observations, in particular the Unruh effect which claims that
the accelerated observer will view radiation emanating from the Rindler horizon
in a similar manner to Hawking radiation.23 Furthermore, Rindler observers have
no shared concept of simultaneity,24 something that is expected of an inertial
coordinate system. This is a result of the fact that the laws of physics are different
in an accelerated frame in Special Relativity which makes them very troublesome
to deal with.

19 Wikipedia, ‘Rindler Coordinates’ (2016) <https://en.wikipedia.org/wiki/Rindler_
coordinates>.

20 Viktor Toth, ‘What is the significance of Rindler coordinates?’ (2016, Quora)
<https://www.quora.com/What-is-the-significance-of-Rindler-coordinates>.

21 Austin Gleeson, ‘Chapter 6: Uniform Acceleration’ <https://web2.ph.utexas.edu/
~gleeson/RelativityNotesChapter6.pdf>.

22 Wikipedia, above n 19.
23 Toth, above n 20.
24 Gleeson, above n 22.
25 ‘Rindler coordinate chart (family of parametric curves) in TikZ’ (2013, TEX)

<http://tex.stackexchange.com/questions/105822/rindler-coordinate-chart-family-
of-parametric-curves-in-tikz>.
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Figure 4: The Rindler coordinate chart otherwise known as the Rindler wedge. It demonstrates lines 
of simultaneity in Rindler coordinates.25
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