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Continued Fraction 
Factorisation Algorithm 

Jean-Paul Hii 

Abstract 
In mathematics, especially number theory, continued fractions allow us 
to represent a real number by successive divisions of integers. 
Applications of continued fractions include constructing rational 
approximations to irrational numbers and helping to solve the 
Diophantine and Pell’s equations. In particular, the continued fraction 
algorithm (CFRAC) is a powerful integer factorisation algorithm. It was 
described by D. H. Lehmer and R. E. Powers in 1931, whose theoretical 
basis will be explored today. It has been described as a general-purpose 
algorithm, meaning that it is suitable for factoring any integer 𝑛, 
independent of the number’s properties. The CFRAC, in its operation, 
also helps us find congruences of the form 𝑥! ≡ 𝑦!	(mod	𝑛). I will 
introduce some statements about continued fractions to motivate the 
purpose of this report. This will be followed with an introduction of 𝑛-
th complete quotients and how they produce the integers needed for the 
CFRAC. The CFRAC can be carried out via two methods which I will 
call the “A method” and “P method”, whose strengths and weaknesses 
will be discussed. Lastly, a faster algorithm, described by Michael A. 
Morrison and John Brillhart, which computerised the A method, will 
also be examined. 

I. BASIC FACTS ABOUT CONTINUED 
FRACTIONS 

I will present some basic facts about continued fractions here. 



 170 

Definition 1.1. A continued fraction is of the form 

𝑥 = 𝑞" +
1

𝑞# +
1

𝑞! +
1

𝑞$…

 

(1) 
We can also identify continued fractions in sequence form as 𝑥 =
[𝑞"; 𝑞#, 𝑞!, … ], 𝑞% ∈ ℤ. 
The above is an example of an infinite continued fraction; a finite 
continued fraction in sequence form is 𝑥 = [𝑞"; 𝑞#, 𝑞!, … , 𝑞&], 𝑛 ∈ ℕ. 
Theorem 1.2. Every 𝑥 ∈ ℚ can be represented as a finite continued 
fraction. 
Example 1.3. In order to represent '!

!$
 as a finite continued fraction, we 

can apply the Euclidean algorithm to 62 and 23 to obtain: 
62
23

= 2 +
1

1 + 1
2 + 1

3 + 12

= [2; 1,2,3,2] 

(2) 
Definition 1.4. If [𝑞", … , 𝑞&] is a finite continued fraction, its 𝑘-th 
convergent is [𝑞", … , 𝑞(] where 𝑘 ≤ 𝑛. More generally, if [𝑞", 𝑞#, … ] is 
an infinite continued fraction, then its k-th convergent is [𝑞", … , 𝑞(] for 
some k. 
Definition 1.5. [𝑞", 𝑞#, … ] = lim(→*[𝑞", … , 𝑞(]. 
Theorem 1.6. Let 𝑞", 𝑞#, … be a sequence such that 𝑞% > 0 whenever 
𝑖 > 0. Define 𝐴" = 𝑞", 𝐵" = 1, 𝐴# = 𝑞"𝑞# + 1, 𝐵# = 𝑞# and the 
following recurrence relations for 𝑖 > 1: 

𝐴% = 𝑞%𝐴%+# + 𝐴%+!. 
(3) 

𝐵% = 𝑞%𝐵%+# + 𝐵%+!. 
(4) 

Then, the k-th convergent is [𝑞"; 𝑞#, … 𝑞(] =
,!
-!

.  
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Intuitively, if one considers ,!
-!
= .!,!"#/,!"$	

.!-!"#/-!"$
, then they can substitute 

all previous recurrence relations into the equation to get the continued 
fraction. We will prove this by induction on 𝑘, however. 
Proof of Theorem 1.6.  We proove this by induction on k. 
Base case 𝑘 = 0: ,%

-%
= 𝑎" = [𝑎"].  

Induction hypothesis: Suppose the theorem holds for some 𝑘 = 𝑛. 
Induction step: We want to show that [𝑞"; 𝑞#, … 𝑞( , 𝑞(/#] =

,!&#
-!&#

. Since 

[𝑞"; 𝑞#, … 𝑞( , 𝑞(/#] = A𝑞"; 𝑞#, … 𝑞( +
#

.!&#
B, we have: 

C𝑞"; 𝑞#, … 𝑞( +
1

𝑞(/#
D =

E𝑞( +
1

𝑞(/#
F 𝐴(+# + 𝐴(+!

E𝑞( +
1

𝑞(/#
F𝐵(+# + 𝐵(+!

	

=
𝑞(𝐴(+# + 𝐴(+! +

𝐴(+#
𝑞(/#

	

𝑞(𝐵(+# + 𝐵(+! +
𝐵(+#
𝑞(/#

	

=
𝑞(/#𝐴( + 𝐴(+#	
𝑞(/#𝐵( + 𝐵(+#

	

=
𝐴(/#	
𝐵(/#

 

� 

II. PERIODIC CONTINUED FRACTIONS 
When is an infinite continued fraction periodic? That is, if 𝑥 is 
irrational, when is 𝑥 = G𝑞"; 𝑞#, … 𝑞1 , 𝑞1/#, … 𝑞1/2H? Here, 𝑝 denotes the 
periodicity of the terms repeated. 
 
Definition 2.1. An element 𝑎 ∈ ℝ is a quadratic surd if it is irrational 
and there exists a quadratic polynomial 𝑓(𝑥) ∈ ℤ[𝑥] such that 𝑓(𝑎) =
0. 
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Theorem 2.2. Let x ∈ ℝ, then the continued fraction for x is infinite 
and periodic if and only if  x is a quadratic surd. 
 
Example 2.3. The golden ratio 𝜙 = #/√4

!
 is a solution to the quadratic 

equation 𝑥! − 𝑥 − 1 = 0 and its continued fraction is [1; 1,1, … ]. 
 
In the case of 𝑥 = √𝑁, where 𝑁 is a square free positive integer, we get 
an interesting result. 
 
Theorem 2.4. Let 𝑁 be a square free positive integer, then the period 
starts after the first term in the continued fraction for √𝑁, i.e. √𝑁 =
G𝑞"; 𝑞#, 𝑞!, … , 𝑞2+#, 2𝑞"H. Moreover, the sequence 𝑞#, 𝑞!, … , 𝑞2+# has 
the property that 𝑞2+% = 𝑞% for 1 ≤ 𝑖 ≤ 𝑝 − 1. 
 
𝐄𝐱𝐚𝐦𝐩𝐥𝐞	𝟐. 𝟓. √7 = G2; 1,1,1,4H. 
We now move on to the main part of this report. There is a simple 
algorithm which computes the 𝑞%’s in the continued fraction of √𝑁 
using only integer arithmetic. However, the downside is that several 
other integers will also be computed, which add extra calculations when 
attempting to factor an integer using CFRAC. These integers are shown 
in Equations (6) and (7). 
 
Definition 2.6. The 𝑛-th complete quotient of 𝑥&, where 𝑥& is the 𝑛-th 
convergent of √𝑁 is defined as 

𝑥& = [
√𝑁, if 𝑛 = 0

1
𝑥%+# − 𝑞%+#	

, if 𝑛 ≥ 1
 

(5) 
The work done until now implies that if we want to factor an integer 𝑁, 
we should consider the continued fraction expansion of √𝑁, which the 
CFRAC does. The trouble is that we need the presence of perfect 
squares among the denominators of our complete quotients. However, 
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the product of two or more distinct denominators is often a square, 
which will lead to the A and P methods. 
 
We will now rewrite our complete quotients into something which will 
be useful down the road. With enough algebraic manipulation, one can 
check that 𝑥& =

5'/√6
7'

 for 𝑛 ≥ 0, where: 

𝑃& = ^
0 if 𝑛 = 0
𝑞" if 𝑛 = 1
𝑞&+#𝑄&+# − 𝑃&+# if 𝑛 ≥ 2,

 

(6) 
and 

𝑄& = ^
1 if 𝑛 = 0
𝑁 − 𝑞"! if 𝑛 = 1
𝑄&+! + (𝑃&+# − 𝑃&)𝑞&+# if 𝑛 ≥ 2.

 

(7) 
Finally, the 𝑞&’s can be computed by 

𝑞& = ⌊𝑥&⌋ = b
c√𝑁d, if 𝑛 = 0

e
√𝑁 + 𝑃&
𝑄&	

f , if 𝑛 ≥ 1
 

(8) 
With 𝐴& and 𝐵& defined as in Theorem 1.6, we have the following two 
equalities: 

(−1)&𝑄& = 𝐴&+#! − 𝐵&+#! 𝑁, 
(9) 

and 
𝑁 = 𝑃&! + 𝑄&𝑄&+#. 

(10) 
Equations (9) and (10) will be the key drivers in the A and P method 
respectively; the 𝑄&’s are particularly significant in both methods. 
Definition 2.7. Let (−1)&𝑄& = 𝑄&∗ . Two 𝑄&∗ ’s are equivalent if their 
product is a square, that is, 𝑄% ∗ is equivalent to 𝑄1 ∗ if 𝑥!𝑄%∗ = 𝑦!𝑄1∗ 
for 𝑥, 𝑦 ∈ ℤ. 
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III. LEHMER AND POWERS 

A. The A method 

Let ,'
-'
	 be the 𝑛-th convergent of the continued fraction expansion of 

√𝑁. Then Equation (9) gives us 
(−1)&𝑄& ≡ 𝐴&+#! 	(mod	𝑁). 

(11) 
Thus, if 𝑄%∗ is equivalent to 𝑄1∗, then 

(𝑥𝐴%+#)! ≡ (𝑦𝐴1+#)!	(mod	𝑁). 
This relates to the general strategy we will try to use to factor 𝑁: 
 
Theorem 3.1. If N is a composite integer, 𝑥, 𝑦 ∈ ℤ, and 𝑥! ≡
𝑦!	(mod	𝑁), but 𝑥 ≢ ±𝑦	(mod	𝑁), then 𝑔𝑐𝑑(𝑥 − 𝑦,𝑁) and 𝑔𝑐𝑑(𝑥 +
𝑦,𝑁) are proper factors of N. 
 
Proof of Theorem 3.1. The assumption implies that 𝑁 divides 𝑥! −
𝑦! = (𝑥 + 𝑦)(𝑥 − 𝑦), but 𝑁 does not divide either of the factors. Since 
𝑁 is composite, at least one of its prime factors does not divide 𝑥 + 𝑦, 
so those prime factors must divide 𝑥 − 𝑦 instead, and the same 
argument goes for 𝑥 − 𝑦. Thus gcd(𝑥 − 𝑦,𝑁) and gcd(𝑥 + 𝑦,𝑁) are 
both greater than 1 and less than 𝑁. 
 
Therefore, unless 𝑁 divides either 𝑥𝐴%+# ± 𝑦𝐴1+#, it is possible to 
obtain a factorisation of 𝑁. 
 
The A method allows for multiple 𝑄&’s to be used, that is, if 𝑥!𝑄%∗𝑄1∗ is 
equivalent to 𝑦!𝑄(∗ , then 

(𝑥𝐴%+#𝐴1+#)! ≡ (𝑦𝐴(+#)!	(mod	𝑁) 
(12) 

which is an instance of Theorem 3.1. 
� 
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One may wonder what is the chance of choosing 𝑥 and 𝑦 such that they 
satisfy Definition 2.7. It turns out the probability is better than 50-50. 
Theorem 3.2. If N is a odd composite integer with at least two different 
prime factors and 𝑥, 𝑦 ∈ ℤ are randomly chosen subject to 𝑥! ≡
𝑦! (mod N), then gcd(x-y, N) is a proper factor of N with probability 
greater than or equal to #

!
. 

 
Proof of Thoerem 3.2. Suppose 𝑁 is odd and has more than two different 
prime factors. Let 𝑥, 𝑦 ∈ ℤ be such that 𝑥! ≡ 𝑦! (mod 𝑁). By the 
Chinese Remainder Theorem, 𝑥! ≡ 𝑦! (mod 𝑝() for a prime factor 𝑝 
of 𝑁 and 𝑘 ∈ ℕ. 𝑦! is then a quadratic residue mod 𝑝, and so the 
congruence 𝑥! ≡ 𝑦! (mod 𝑝() has two solutions 𝑥 = ±𝑦. Hence, there 
are 2( solutions to 𝑥! ≡ 𝑦! (mod 𝑁). Therefore, if we choose 𝑥 and 𝑦 
randomly, the probability that 𝑥! ≢ 𝑦! (mod 𝑁) would be !

!+!
!!

= 1 −
2(+#. Thus, the probability that 𝑥! ≡ 𝑦! (mod 𝑁) is greater than or 
equal to #

!
. 

� 

B. The P method 
From Equation (10), we have 

−𝑄&𝑄&+# ≡ 𝑃&!	(mod	𝑁). 
(12) 

Let’s substitute in different 𝑛 ∈ ℕ to see how Equation (13) behaves. If 
𝑛 = 1, we get 

−𝑄# ≡ 𝑃#!	(mod	𝑁). 
If 𝑛 = 2, we get 

𝑄!𝑃#! ≡ 𝑃!!	(mod	𝑁). 
If 𝑛 = 3, we get 

−𝑄$𝑃!! ≡ (𝑃$𝑃#)!	(mod	𝑁). 
Proposition 3.3.  

(−1)9Q9(P9+#P9+$…P:)! ≡ (P9P9+!…P;)!(mod	N),	
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where 𝑟 = 1 and 𝑠 = 2 when 𝑘 is even and 𝑟 = 2 and 𝑠 = 1 when 𝑘 is 
odd. 
 
Proof of Proposition 3.3. We prove this by induction on 𝑘. 
Base case 𝑘 = 1: already shown above. 
Induction hypothesis: suppose the statement is true for 𝑘 = 𝑛 − 1. That 
is, 

(−1)&+#𝑄&+#(𝑃&+!𝑃&+<…𝑃=)! ≡ (𝑃&+#𝑃&+$…𝑃>)!	(mod	𝑁). 
(13) 

Observe that 𝑟 and 𝑠 swapped positions because the parity of 𝑘 changed. 
Induction step: multiply both sides of Equation (13) by 
(𝑃&+!𝑃&+<…𝑃=)! ⋅ (𝑃&+#𝑃&+$…𝑃>)!. Then, divide the LHS by the 
LHS from Equation (14) and divide the RHS by the RHS from Equation 
(14). If done right, this should look like: 

(−1)&𝑄&(𝑃&+#𝑃&+$…𝑃>)! ≡ (𝑃&𝑃&+!…𝑃=)!	(mod	𝑁) 
which finishes the proof. 
� 
 
Remark 3.4. Recalling what it takes for two 𝑄(∗’s to be equivalent, we 
want to try and find instances where 𝑖 and 𝑗 are of the same parity so 
that 

(𝑥𝑃%/#𝑃%/$…𝑃1+#)! ≡ (𝑦𝑃%/!𝑃%/<…𝑃1)!	(mod	𝑁) 
(15) 

which is an instance of Theorem 3.1. Then, as with the A method, unless 
𝑁 divides either 𝑥𝑃%/#𝑃%/$…𝑃1+# ± 𝑦𝑃%/!𝑃%/<…𝑃1, it is possible to 
obtain a factorisation of 𝑁. 

IV. COMPARISON OF A METHOD AND P 
METHOD 

It is now appropriate to do an example. I will use the integer 𝑁 =
13290059. This was the number used in the resources, but several 𝑛 
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values were missed out, I will fill them in to provide a better view on 
how each 𝑞&, 𝑃&, 𝑄&∗  and 𝐴&+# (mod 𝑁) are calculated. 
Since c√13290059	d = 	3645, 𝑞" 	= 	3645. We then use Equations 
(6), (7), (8) and (11) to calculate all desired values. Observe that the 
𝑄&∗ ’s are factored, and the ones that are not imply that those 𝑄&’s are 
prime, this observation will become significant later on. 
According to Remark 3.4, we want to find instances where two indices 
are of the same parity for the P method. Looking at Table 1, observe 
that 𝑄!4 = 𝑄!? and both 25 and 29 are odd. Therefore, Equation (14) 
tells us that 

(𝑃!'𝑃!@)! ≡ (𝑃!A𝑃!?)!	(𝑚𝑜𝑑	𝑁). 
In this case, 𝑥 and 𝑦 have cancelled each other out, because they equal 
5 ⋅ 571. We see 𝑃!'𝑃!@ ≢ 𝑃!A𝑃!?		(mod	𝑁).	Therefore, by Theorem 
3.1, we conclude that gcd(𝑃!'𝑃!@ − 𝑃!A𝑃!?, 𝑁) = 3119 is a proper 
factor of 𝑁. 
 
To use more than two 𝑄&∗ ’s, we look at the 𝑄&∗  column and choose the 
values whose product gives a square. For example, we can choose 𝑄4∗, 
𝑄!!∗  and 𝑄!$∗ , because their product gives (2 ⋅ 5 ⋅ 41 ⋅ 113)!. By 
Proposition 3.3, we have the following congruences: 

(−1)4𝑄4(𝑃<𝑃!)! ≡ (𝑃4𝑃$𝑃#)!	(mod	𝑁), 
(16) 

(−1)!!𝑄!!(𝑃!#𝑃#?…𝑃#)! ≡ (𝑃!!𝑃!"…𝑃!)!	(mod	𝑁), 
(17) 

and 
(−1)!$𝑄!$(𝑃!!𝑃!"…𝑃!)! ≡ (𝑃!$𝑃!#…𝑃#)!	(mod	𝑁). 

(18) 
By switching the LHS and RHS of Equations (17) and (18), multiplying 
all three equations together and cancelling out appropriately, we have 

(5𝑃!𝑃<𝑃!$)! ≡ (113𝑃#𝑃$𝑃4)!	(mod	𝑁), 
implying that gcd(5𝑃!𝑃<𝑃!$ − 113𝑃#𝑃$𝑃4, 𝑁) = 3119 is a proper 
factor of 𝑁. 

𝑛 𝑞! 𝑃! 𝑄!∗  𝐴!#$ (mod 𝑁) 

0 3645 0 1 1 
1 1 3645 -2⋅2017 3645 
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2 1 389 3257 3646 
3 4 2868 -5⋅311 7291 
4 5 3352 1321 32810 
5 3 3253 -2 ⋅ 5% ⋅ 41 171341 
6 2 2897 2389 546833 
7 1 1881 -2 ⋅ 13 ⋅ 157 1265007 
8 2 2201 2069 1811840 
9 1 1937 -2 ⋅ 5 ⋅ 461 4888687 

10 4 2673 31 ⋅ 43 6700527 
11 1 2659 -2 ⋅ 2333 5110677 
12 2 2007 5 ⋅ 397 11811204 
13 1 1963 -2 ⋅ 2377 2152967 
14 5 2791 13 ⋅ 89 674112 
15 1 2994 -3739 5523527 
16 1 745 2 ⋅ 13 ⋅ 131 6197639 
17 3 2661 -1823 11721166 
18 2 2808 5 ⋅ 593 1490960 
19 5 3122 -5 ⋅ 239 1413027 
20 1 2853 2 ⋅ 5 ⋅ 431 8556095 
21 1 1457 -2591 9969122 
22 1 1134 41 ⋅ 113 5235158 
23 31 3499 -2 ⋅ 113 1914221 
24 1 3507 5 ⋅ 877 11415773 
25 1 878 -5 ⋅ 571 39935 
26 1 1977 2 ⋅ 31 ⋅ 53 11455708 
27 1 1309 -13 ⋅ 271 11495643 
28 2 2214 2381 9661292 
29 2 2548 -5 ⋅ 571 4238109 
30 5 3162 1153 4847451 
31 1 2603 -2 ⋅ 5% ⋅ 113 1895246 
32 9 3047 709 6742697 
33 2 3334 -3067 9419283 
34 3 2800 1777 12291204 
35 1 2531 -2 ⋅ 13 ⋅ 149 6422718 
36 1 1343 5 ⋅ 593 5423863 
37 1 1622 -5⋅719 11846581 
38 2 1973 2⋅1307 2463469 
39 6 3255 -1031 5899447 
40 

 

 

1 2931 2 ⋅ 43 ⋅ 53 3213960 

 Table 1: Continued fraction for √13290059. 
Since we took the time to calculate 𝐴&+# (mod 𝑁), we can also use the 
A method to greatly simplify our work above. If we take 𝑄4∗, 𝑄!!∗  and 



 179 

𝑄!$∗  again, this time we look at the 𝐴&+# (mod 𝑁) and pick out 𝐴<, 𝐴!# 
and 𝐴!! as the values to Equation (12), doing so implies 

(5𝐴!#𝐴!!)! ≡ (113𝐴<)!	(mod	𝑁) 
and thus gcd(5𝐴!#𝐴!! − 113𝐴<, 𝑁) = 3119 is a proper factor of 𝑁. 
From Table 1, we can see that it really only depends on the ease of 
application. For the P method, if we see two equivalent 𝑄&∗ ’s whose 𝑛 
are close to each other (“close” is up to the reader’s discretion), it will 
be efficient; we can also use the P method for more than two 𝑄&∗ ’s, it 
will just take a longer calculation, which is where the A method 
becomes more beneficial, since it requires simpler calculations. 
However, to calculate the values needed for the A method is arguably 
harder than calculating the values needed for the P method because 
Equation (11) is a quadratic equation. 

V. MORRISON AND BRILLHART 
Morrison and Brillhart reprised the A method of the CFRAC discovered 
by Lehmer and Powers and improved it by using Gaussian elimination 
on vectors of exponents modulo 2. Before exploring how they used 
Gaussian elimination, we introduce the concept of smoothness of 
numbers: 
 
Definition 5.1. A positive integer is 𝐵-smooth if there exists 𝐵 ∈ ℕ 
such that the integer’s prime factors are all less than or equal to 𝐵. 
These were the steps Morrison and Brillhart took in order use vectors: 
1. Recall that some of the 𝑄&s were composite. Pick an upper bound 

𝐵 ∈ ℕ. 
 

2. Keep the 𝑄&∗ s whose 𝑄&s factored into primes less than or equal 
to 𝐵. In other words, we want to find the 𝑄&s that are 𝐵-smooth. 

 
3. Those primes form a set called the factor base. For convenience, 

we add -1 as a “prime” into the factor base because we want to 
square the 𝑄&∗ s. 
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4. When 𝑄& is 𝐵-smooth, define the vector �⃗�& whose entries are 
made up of the multiplicity modulo 2 of those prime factors. That 
is, if the prime factors of 𝑄& are ordered and the 𝑖-th prime has an 
even or odd power, then the 𝑖-th entry of �⃗�& is 0 or 1 respectively. 
 

5. Form a matrix whose rows are the �⃗�&s for which 𝑄& is 𝐵-smooth. 
 
6. Since {0,1} ∈ ℤ!, these are the only possible coefficients for our 

linear combinations. 
 
7. Let 𝑆 be the set of 𝑖 for which �⃗�% is in dependency. Then ∏%∈C

𝑄&∗ = 𝑦! for some 𝑦 ∈ 𝑍. 
 
8. Let 𝑥 = ∏ 𝐴&+#%∈C 	 (mod	𝑁), then we get 𝑥! ≡ 𝑦!	(mod	𝑁), 

which by Equation (15) leads to an instance of Theorem 3.1. 
 
Let’s use this algorithm on 𝑁 = 13290059. Again, I will replicate the 
work done in the resources provided but give more details. Choose our 
upper bound 𝐵 = 113 and find all primes less than or equal to 113 
(there are 30 in total). Choose our factor base to be the set 
{−1,2,5,31,43,53,113}. Observe that we could’ve added other primes 
in such as 3 or 7 but notice that those primes never occurred in Table 1, 
implying that they rarely or never occur in the factorisations of the 𝑄&s. 
Thus, using them is redundant. 
 
We now want to choose 𝑛 such that the factorisation of 𝑄& gives us 
prime factors in the factor base. For example, we do not want to choose 
𝑄! because 2017 is not in our factor base; had 41 been in the factor base, 
we could’ve chosen 𝑄4. 
 
Let’s choose 𝑄#", 𝑄!$, 𝑄!', 𝑄$# and 𝑄<", referring back to Table 1 for 
their factorisations. We can choose more, but keep in mind that we want 
more rows than columns in our matrix. 

𝑛/factor base −1 2 5 31 43 53 113  
10 0 0 0 1 1 0 0 = �⃗�#" 
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23 1 1 0 0 0 0 1 = 𝑣!$ 
26 0 1 0 1 0 1 0 = 𝑣!' 
31 1 1 0 0 0 0 1 = 𝑣$# 
40 0 1 0 0 1 1 0 = 𝑣<" 

        Table 2: Factor base and the 𝑣(s 
We now construct the 5 x 7 matrix whose rows are made up of the �⃗�&s: 

⎣
⎢
⎢
⎢
⎡
0 0 0 1 1 0 0
1 1 0 0 0 0 1
0 1 0 1 0 1 0
1 1 0 0 0 0 1
0 1 0 0 1 1 0⎦

⎥
⎥
⎥
⎤
  

Here, we see that the first, third and fifth rows are linearly dependent 
and the second and fourth rows are linearly dependent. The first 
dependency gives 
(6700527 ⋅ 11455708 ⋅ 3213960)! ≡ (2 ⋅ 31 ⋅ 43 ⋅ 53)!	(mod	𝑁), 

but neither 
gcd	((6700527 ⋅ 11455708 ⋅ 3213960)! − (2 ⋅ 31 ⋅ 43 ⋅ 53)!, 𝑁) 

nor  
gcd	((6700527 ⋅ 11455708 ⋅ 3213960)! + (2 ⋅ 31 ⋅ 43 ⋅ 53)!, 𝑁) 

factor N. The second dependency gives 
(1914221 ⋅ 1895246)! ≡ (2 ⋅ 5 ⋅ 113)!	(mod	𝑁). 

We, then, have 
gcd	((1914221 ⋅ 1895246)! − (2 ⋅ 5 ⋅ 113)!, 𝑁) = 4261 

and 
gcd	((1914221 ⋅ 1895246)! + (2 ⋅ 5 ⋅ 113)!, 𝑁) = 3119. 

These are the proper factors of 𝑁. 
We now present the algorithm: 
Algorithm 1 CFRAC 
1: procedure 
2:     input: a composite integer N 
3:     Choose your factor base and an upper bound 𝐵. 
4:     𝑝" ← 0. 
5:     𝑅 ← 0. 
6:     𝑖 ← 0. 
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7:     while R < K + 10 do 
8:         Compute 𝑃%, 𝑄%∗, 𝑞% and 𝐴%+#	(mod	𝑁). 
9:         if 𝑄%∗ is factored using primes in the factor base then	
10:             Save 𝑖, 𝑄%∗ and 𝐴%+#	(mod	𝑁) in a file 
11:             𝑅 ← 𝑅 + 1. 
12:             𝑖 ← 𝑖 + 1. 
13:     Form the matrix whose rows are the vectors �⃗�%. 
14:     Find linear dependencies amoung the �⃗�%’s. 
15: Let 𝑆 = {𝑖 ∈ ℕ:𝑄% 	factors into primes in the factor base, ∏ �⃗�%%∈C =

0}. 
 

16: for each dependency ∏ �⃗�%%∈C = 0 do 
 17:         𝑦! = ∏ 𝑄&∗%∈C  and 𝑥 = ∏ 𝐴&+#%∈C 	 (mod	𝑁). 

18:         if If gcd(𝑥 − 𝑦,𝑁) is a proper factor of N then 
 19:             break 

20:     Output: a factor of 𝑁. 

VI. FINAL REMARKS 
The time complexity on the algorithm presented by Morrison and 
Brillhart is 𝑂 E𝑒D!log&⋅log(log&)F134. Even though this is exponential time, 
the log𝑛 prevents the running time from growing too big in proportion 
to the size of 𝑛. Recall that the A method and P method are the 
foundations to the CFRAC; indeed, they are related by the following 
theorem: 
 
Theorem 6.1. The A method successfully yields a factor of 𝑁 if and 
only if the P method successfully yields a factor of 𝑁. 
To prove this, we need a lemma: 
 
Lemma 6.2. For 𝑘 ≥ 2, we have 

 
134 Pomerance, Carl (December 1996). "A Tale of Two Sieves" (PDF). Notices of the AMS. 43 
(12). pp. 1473-1485 
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𝑃( + (−1)(𝐴(+#𝐴(+! ≡ 0	(mod	𝑁). 
Proof. Of Lemma 6.2. We prove this by induction on 𝑘. 
Base case 𝑘 = 2: 

𝑃! + 𝐴#𝐴" = (𝑞#𝑄# − 𝑃#) + (𝑞"𝑞# + 1)𝑞"									
= 𝑞#(𝑁 − 𝑞"!) − 𝑞" + (𝑞"𝑞# + 1)𝑞"
≡ 0	(mod	𝑁).																																									

 

Induction hypothesis: Suppose the lemma is true for 𝑛 − 1. So 
𝑃&+# + (−1)&+#𝐴&+!𝐴&+$ ≡ 0	(mod	𝑁). 

Induction step: Since 𝑃& = 𝑞&+#𝑄&+# − 𝑃&+#, we have 
0 ≡ 𝑃&+# − 𝑄&+#𝑞&+# + (−1)&+#𝐴&+!𝐴&+$ + 𝑄&+#𝑞&+#

≡ −𝑃& + (−1)&+#𝐴&+!(𝐴&+$ + 𝐴&+!𝑞&+#)																					
≡ −𝑃& + (−1)&+#𝐴&+#𝐴&+!	(mod	𝑁).																															

 

� 
Proof of Theorem 6.1. Assume the contrapositive: that the P method 
fails. Then, 𝑁 divides either 𝑥𝑃%/#𝑃%/$…𝑃1+# ± 𝑦𝑃%/!𝑃%/<. . . 𝑃1. 
Substituting the equation from Lemma 6.2 into the 𝑃%’s appropriately 
and simplifying imply that N divides either 𝑥𝐴%+# ± 𝑦𝐴1+#, which 
means the A method fails. The converse is true by reversing the above 
argument. 
  


