
 169

Continued Fraction
Factorisation Algorithm

Jean-Paul Hii

Abstract
In mathematics, especially number theory, continued fractions allow us
to represent a real number by successive divisions of integers.
Applications of continued fractions include constructing rational
approximations to irrational numbers and helping to solve the
Diophantine and Pell’s equations. In particular, the continued fraction
algorithm (CFRAC) is a powerful integer factorisation algorithm. It was
described by D. H. Lehmer and R. E. Powers in 1931, whose theoretical
basis will be explored today. It has been described as a general-purpose
algorithm, meaning that it is suitable for factoring any integer 𝑛,
independent of the number’s properties. The CFRAC, in its operation,
also helps us find congruences of the form 𝑥! ≡ 𝑦!	(mod	𝑛). I will
introduce some statements about continued fractions to motivate the
purpose of this report. This will be followed with an introduction of 𝑛-
th complete quotients and how they produce the integers needed for the
CFRAC. The CFRAC can be carried out via two methods which I will
call the “A method” and “P method”, whose strengths and weaknesses
will be discussed. Lastly, a faster algorithm, described by Michael A.
Morrison and John Brillhart, which computerised the A method, will
also be examined.

I. BASIC FACTS ABOUT CONTINUED
FRACTIONS

I will present some basic facts about continued fractions here.

 170

Definition 1.1. A continued fraction is of the form

𝑥 = 𝑞" +
1

𝑞# +
1

𝑞! +
1

𝑞$…

(1)
We can also identify continued fractions in sequence form as 𝑥 =
[𝑞"; 𝑞#, 𝑞!, …], 𝑞% ∈ ℤ.
The above is an example of an infinite continued fraction; a finite
continued fraction in sequence form is 𝑥 = [𝑞"; 𝑞#, 𝑞!, … , 𝑞&], 𝑛 ∈ ℕ.
Theorem 1.2. Every 𝑥 ∈ ℚ can be represented as a finite continued
fraction.
Example 1.3. In order to represent '!

!$
 as a finite continued fraction, we

can apply the Euclidean algorithm to 62 and 23 to obtain:
62
23

= 2 +
1

1 + 1
2 + 1

3 + 12

= [2; 1,2,3,2]

(2)
Definition 1.4. If [𝑞", … , 𝑞&] is a finite continued fraction, its 𝑘-th
convergent is [𝑞", … , 𝑞(] where 𝑘 ≤ 𝑛. More generally, if [𝑞", 𝑞#, …] is
an infinite continued fraction, then its k-th convergent is [𝑞", … , 𝑞(] for
some k.
Definition 1.5. [𝑞", 𝑞#, …] = lim(→*[𝑞", … , 𝑞(].
Theorem 1.6. Let 𝑞", 𝑞#, … be a sequence such that 𝑞% > 0 whenever
𝑖 > 0. Define 𝐴" = 𝑞", 𝐵" = 1, 𝐴# = 𝑞"𝑞# + 1, 𝐵# = 𝑞# and the
following recurrence relations for 𝑖 > 1:

𝐴% = 𝑞%𝐴%+# + 𝐴%+!.
(3)

𝐵% = 𝑞%𝐵%+# + 𝐵%+!.
(4)

Then, the k-th convergent is [𝑞"; 𝑞#, … 𝑞(] =
,!
-!

.

 171

Intuitively, if one considers ,!
-!
= .!,!"#/,!"$	

.!-!"#/-!"$
, then they can substitute

all previous recurrence relations into the equation to get the continued
fraction. We will prove this by induction on 𝑘, however.
Proof of Theorem 1.6. We proove this by induction on k.
Base case 𝑘 = 0: ,%

-%
= 𝑎" = [𝑎"].

Induction hypothesis: Suppose the theorem holds for some 𝑘 = 𝑛.
Induction step: We want to show that [𝑞"; 𝑞#, … 𝑞(, 𝑞(/#] =

,!&#
-!&#

. Since

[𝑞"; 𝑞#, … 𝑞(, 𝑞(/#] = A𝑞"; 𝑞#, … 𝑞(+
#

.!&#
B, we have:

C𝑞"; 𝑞#, … 𝑞(+
1

𝑞(/#
D =

E𝑞(+
1

𝑞(/#
F 𝐴(+# + 𝐴(+!

E𝑞(+
1

𝑞(/#
F𝐵(+# + 𝐵(+!

	

=
𝑞(𝐴(+# + 𝐴(+! +

𝐴(+#
𝑞(/#

	

𝑞(𝐵(+# + 𝐵(+! +
𝐵(+#
𝑞(/#

	

=
𝑞(/#𝐴(+ 𝐴(+#	
𝑞(/#𝐵(+ 𝐵(+#

	

=
𝐴(/#	
𝐵(/#

�

II. PERIODIC CONTINUED FRACTIONS
When is an infinite continued fraction periodic? That is, if 𝑥 is
irrational, when is 𝑥 = G𝑞"; 𝑞#, … 𝑞1 , 𝑞1/#, … 𝑞1/2H? Here, 𝑝 denotes the
periodicity of the terms repeated.

Definition 2.1. An element 𝑎 ∈ ℝ is a quadratic surd if it is irrational
and there exists a quadratic polynomial 𝑓(𝑥) ∈ ℤ[𝑥] such that 𝑓(𝑎) =
0.

 172

Theorem 2.2. Let x ∈ ℝ, then the continued fraction for x is infinite
and periodic if and only if x is a quadratic surd.

Example 2.3. The golden ratio 𝜙 = #/√4

!
 is a solution to the quadratic

equation 𝑥! − 𝑥 − 1 = 0 and its continued fraction is [1; 1,1, …].

In the case of 𝑥 = √𝑁, where 𝑁 is a square free positive integer, we get
an interesting result.

Theorem 2.4. Let 𝑁 be a square free positive integer, then the period
starts after the first term in the continued fraction for √𝑁, i.e. √𝑁 =
G𝑞"; 𝑞#, 𝑞!, … , 𝑞2+#, 2𝑞"H. Moreover, the sequence 𝑞#, 𝑞!, … , 𝑞2+# has
the property that 𝑞2+% = 𝑞% for 1 ≤ 𝑖 ≤ 𝑝 − 1.

𝐄𝐱𝐚𝐦𝐩𝐥𝐞	𝟐. 𝟓. √7 = G2; 1,1,1,4H.
We now move on to the main part of this report. There is a simple
algorithm which computes the 𝑞%’s in the continued fraction of √𝑁
using only integer arithmetic. However, the downside is that several
other integers will also be computed, which add extra calculations when
attempting to factor an integer using CFRAC. These integers are shown
in Equations (6) and (7).

Definition 2.6. The 𝑛-th complete quotient of 𝑥&, where 𝑥& is the 𝑛-th
convergent of √𝑁 is defined as

𝑥& = [
√𝑁, if 𝑛 = 0

1
𝑥%+# − 𝑞%+#	

, if 𝑛 ≥ 1

(5)
The work done until now implies that if we want to factor an integer 𝑁,
we should consider the continued fraction expansion of √𝑁, which the
CFRAC does. The trouble is that we need the presence of perfect
squares among the denominators of our complete quotients. However,

 173

the product of two or more distinct denominators is often a square,
which will lead to the A and P methods.

We will now rewrite our complete quotients into something which will
be useful down the road. With enough algebraic manipulation, one can
check that 𝑥& =

5'/√6
7'

 for 𝑛 ≥ 0, where:

𝑃& = ^
0 if 𝑛 = 0
𝑞" if 𝑛 = 1
𝑞&+#𝑄&+# − 𝑃&+# if 𝑛 ≥ 2,

(6)
and

𝑄& = ^
1 if 𝑛 = 0
𝑁 − 𝑞"! if 𝑛 = 1
𝑄&+! + (𝑃&+# − 𝑃&)𝑞&+# if 𝑛 ≥ 2.

(7)
Finally, the 𝑞&’s can be computed by

𝑞& = ⌊𝑥&⌋ = b
c√𝑁d, if 𝑛 = 0

e
√𝑁 + 𝑃&
𝑄&	

f , if 𝑛 ≥ 1

(8)
With 𝐴& and 𝐵& defined as in Theorem 1.6, we have the following two
equalities:

(−1)&𝑄& = 𝐴&+#! − 𝐵&+#! 𝑁,
(9)

and
𝑁 = 𝑃&! + 𝑄&𝑄&+#.

(10)
Equations (9) and (10) will be the key drivers in the A and P method
respectively; the 𝑄&’s are particularly significant in both methods.
Definition 2.7. Let (−1)&𝑄& = 𝑄&∗ . Two 𝑄&∗ ’s are equivalent if their
product is a square, that is, 𝑄% ∗ is equivalent to 𝑄1 ∗ if 𝑥!𝑄%∗ = 𝑦!𝑄1∗
for 𝑥, 𝑦 ∈ ℤ.

 174

III. LEHMER AND POWERS

A. The A method

Let ,'
-'
	 be the 𝑛-th convergent of the continued fraction expansion of

√𝑁. Then Equation (9) gives us
(−1)&𝑄& ≡ 𝐴&+#! 	(mod	𝑁).

(11)
Thus, if 𝑄%∗ is equivalent to 𝑄1∗, then

(𝑥𝐴%+#)! ≡ (𝑦𝐴1+#)!	(mod	𝑁).
This relates to the general strategy we will try to use to factor 𝑁:

Theorem 3.1. If N is a composite integer, 𝑥, 𝑦 ∈ ℤ, and 𝑥! ≡
𝑦!	(mod	𝑁), but 𝑥 ≢ ±𝑦	(mod	𝑁), then 𝑔𝑐𝑑(𝑥 − 𝑦,𝑁) and 𝑔𝑐𝑑(𝑥 +
𝑦,𝑁) are proper factors of N.

Proof of Theorem 3.1. The assumption implies that 𝑁 divides 𝑥! −
𝑦! = (𝑥 + 𝑦)(𝑥 − 𝑦), but 𝑁 does not divide either of the factors. Since
𝑁 is composite, at least one of its prime factors does not divide 𝑥 + 𝑦,
so those prime factors must divide 𝑥 − 𝑦 instead, and the same
argument goes for 𝑥 − 𝑦. Thus gcd(𝑥 − 𝑦,𝑁) and gcd(𝑥 + 𝑦,𝑁) are
both greater than 1 and less than 𝑁.

Therefore, unless 𝑁 divides either 𝑥𝐴%+# ± 𝑦𝐴1+#, it is possible to
obtain a factorisation of 𝑁.

The A method allows for multiple 𝑄&’s to be used, that is, if 𝑥!𝑄%∗𝑄1∗ is
equivalent to 𝑦!𝑄(∗ , then

(𝑥𝐴%+#𝐴1+#)! ≡ (𝑦𝐴(+#)!	(mod	𝑁)
(12)

which is an instance of Theorem 3.1.
�

 175

One may wonder what is the chance of choosing 𝑥 and 𝑦 such that they
satisfy Definition 2.7. It turns out the probability is better than 50-50.
Theorem 3.2. If N is a odd composite integer with at least two different
prime factors and 𝑥, 𝑦 ∈ ℤ are randomly chosen subject to 𝑥! ≡
𝑦! (mod N), then gcd(x-y, N) is a proper factor of N with probability
greater than or equal to #

!
.

Proof of Thoerem 3.2. Suppose 𝑁 is odd and has more than two different
prime factors. Let 𝑥, 𝑦 ∈ ℤ be such that 𝑥! ≡ 𝑦! (mod 𝑁). By the
Chinese Remainder Theorem, 𝑥! ≡ 𝑦! (mod 𝑝() for a prime factor 𝑝
of 𝑁 and 𝑘 ∈ ℕ. 𝑦! is then a quadratic residue mod 𝑝, and so the
congruence 𝑥! ≡ 𝑦! (mod 𝑝() has two solutions 𝑥 = ±𝑦. Hence, there
are 2(solutions to 𝑥! ≡ 𝑦! (mod 𝑁). Therefore, if we choose 𝑥 and 𝑦
randomly, the probability that 𝑥! ≢ 𝑦! (mod 𝑁) would be !

!+!
!!

= 1 −
2(+#. Thus, the probability that 𝑥! ≡ 𝑦! (mod 𝑁) is greater than or
equal to #

!
.

�

B. The P method
From Equation (10), we have

−𝑄&𝑄&+# ≡ 𝑃&!	(mod	𝑁).
(12)

Let’s substitute in different 𝑛 ∈ ℕ to see how Equation (13) behaves. If
𝑛 = 1, we get

−𝑄# ≡ 𝑃#!	(mod	𝑁).
If 𝑛 = 2, we get

𝑄!𝑃#! ≡ 𝑃!!	(mod	𝑁).
If 𝑛 = 3, we get

−𝑄$𝑃!! ≡ (𝑃$𝑃#)!	(mod	𝑁).
Proposition 3.3.

(−1)9Q9(P9+#P9+$…P:)! ≡ (P9P9+!…P;)!(mod	N),	

 176

where 𝑟 = 1 and 𝑠 = 2 when 𝑘 is even and 𝑟 = 2 and 𝑠 = 1 when 𝑘 is
odd.

Proof of Proposition 3.3. We prove this by induction on 𝑘.
Base case 𝑘 = 1: already shown above.
Induction hypothesis: suppose the statement is true for 𝑘 = 𝑛 − 1. That
is,

(−1)&+#𝑄&+#(𝑃&+!𝑃&+<…𝑃=)! ≡ (𝑃&+#𝑃&+$…𝑃>)!	(mod	𝑁).
(13)

Observe that 𝑟 and 𝑠 swapped positions because the parity of 𝑘 changed.
Induction step: multiply both sides of Equation (13) by
(𝑃&+!𝑃&+<…𝑃=)! ⋅ (𝑃&+#𝑃&+$…𝑃>)!. Then, divide the LHS by the
LHS from Equation (14) and divide the RHS by the RHS from Equation
(14). If done right, this should look like:

(−1)&𝑄&(𝑃&+#𝑃&+$…𝑃>)! ≡ (𝑃&𝑃&+!…𝑃=)!	(mod	𝑁)
which finishes the proof.
�

Remark 3.4. Recalling what it takes for two 𝑄(∗’s to be equivalent, we
want to try and find instances where 𝑖 and 𝑗 are of the same parity so
that

(𝑥𝑃%/#𝑃%/$…𝑃1+#)! ≡ (𝑦𝑃%/!𝑃%/<…𝑃1)!	(mod	𝑁)
(15)

which is an instance of Theorem 3.1. Then, as with the A method, unless
𝑁 divides either 𝑥𝑃%/#𝑃%/$…𝑃1+# ± 𝑦𝑃%/!𝑃%/<…𝑃1, it is possible to
obtain a factorisation of 𝑁.

IV. COMPARISON OF A METHOD AND P
METHOD

It is now appropriate to do an example. I will use the integer 𝑁 =
13290059. This was the number used in the resources, but several 𝑛

 177

values were missed out, I will fill them in to provide a better view on
how each 𝑞&, 𝑃&, 𝑄&∗ and 𝐴&+# (mod 𝑁) are calculated.
Since c√13290059	d = 	3645, 𝑞" 	= 	3645. We then use Equations
(6), (7), (8) and (11) to calculate all desired values. Observe that the
𝑄&∗ ’s are factored, and the ones that are not imply that those 𝑄&’s are
prime, this observation will become significant later on.
According to Remark 3.4, we want to find instances where two indices
are of the same parity for the P method. Looking at Table 1, observe
that 𝑄!4 = 𝑄!? and both 25 and 29 are odd. Therefore, Equation (14)
tells us that

(𝑃!'𝑃!@)! ≡ (𝑃!A𝑃!?)!	(𝑚𝑜𝑑	𝑁).
In this case, 𝑥 and 𝑦 have cancelled each other out, because they equal
5 ⋅ 571. We see 𝑃!'𝑃!@ ≢ 𝑃!A𝑃!?		(mod	𝑁).	Therefore, by Theorem
3.1, we conclude that gcd(𝑃!'𝑃!@ − 𝑃!A𝑃!?, 𝑁) = 3119 is a proper
factor of 𝑁.

To use more than two 𝑄&∗ ’s, we look at the 𝑄&∗ column and choose the
values whose product gives a square. For example, we can choose 𝑄4∗,
𝑄!!∗ and 𝑄!$∗ , because their product gives (2 ⋅ 5 ⋅ 41 ⋅ 113)!. By
Proposition 3.3, we have the following congruences:

(−1)4𝑄4(𝑃<𝑃!)! ≡ (𝑃4𝑃$𝑃#)!	(mod	𝑁),
(16)

(−1)!!𝑄!!(𝑃!#𝑃#?…𝑃#)! ≡ (𝑃!!𝑃!"…𝑃!)!	(mod	𝑁),
(17)

and
(−1)!$𝑄!$(𝑃!!𝑃!"…𝑃!)! ≡ (𝑃!$𝑃!#…𝑃#)!	(mod	𝑁).

(18)
By switching the LHS and RHS of Equations (17) and (18), multiplying
all three equations together and cancelling out appropriately, we have

(5𝑃!𝑃<𝑃!$)! ≡ (113𝑃#𝑃$𝑃4)!	(mod	𝑁),
implying that gcd(5𝑃!𝑃<𝑃!$ − 113𝑃#𝑃$𝑃4, 𝑁) = 3119 is a proper
factor of 𝑁.

𝑛 𝑞! 𝑃! 𝑄!∗ 𝐴!#$ (mod 𝑁)

0 3645 0 1 1
1 1 3645 -2⋅2017 3645

 178

2 1 389 3257 3646
3 4 2868 -5⋅311 7291
4 5 3352 1321 32810
5 3 3253 -2 ⋅ 5% ⋅ 41 171341
6 2 2897 2389 546833
7 1 1881 -2 ⋅ 13 ⋅ 157 1265007
8 2 2201 2069 1811840
9 1 1937 -2 ⋅ 5 ⋅ 461 4888687

10 4 2673 31 ⋅ 43 6700527
11 1 2659 -2 ⋅ 2333 5110677
12 2 2007 5 ⋅ 397 11811204
13 1 1963 -2 ⋅ 2377 2152967
14 5 2791 13 ⋅ 89 674112
15 1 2994 -3739 5523527
16 1 745 2 ⋅ 13 ⋅ 131 6197639
17 3 2661 -1823 11721166
18 2 2808 5 ⋅ 593 1490960
19 5 3122 -5 ⋅ 239 1413027
20 1 2853 2 ⋅ 5 ⋅ 431 8556095
21 1 1457 -2591 9969122
22 1 1134 41 ⋅ 113 5235158
23 31 3499 -2 ⋅ 113 1914221
24 1 3507 5 ⋅ 877 11415773
25 1 878 -5 ⋅ 571 39935
26 1 1977 2 ⋅ 31 ⋅ 53 11455708
27 1 1309 -13 ⋅ 271 11495643
28 2 2214 2381 9661292
29 2 2548 -5 ⋅ 571 4238109
30 5 3162 1153 4847451
31 1 2603 -2 ⋅ 5% ⋅ 113 1895246
32 9 3047 709 6742697
33 2 3334 -3067 9419283
34 3 2800 1777 12291204
35 1 2531 -2 ⋅ 13 ⋅ 149 6422718
36 1 1343 5 ⋅ 593 5423863
37 1 1622 -5⋅719 11846581
38 2 1973 2⋅1307 2463469
39 6 3255 -1031 5899447
40

1 2931 2 ⋅ 43 ⋅ 53 3213960

 Table 1: Continued fraction for √13290059.
Since we took the time to calculate 𝐴&+# (mod 𝑁), we can also use the
A method to greatly simplify our work above. If we take 𝑄4∗, 𝑄!!∗ and

 179

𝑄!$∗ again, this time we look at the 𝐴&+# (mod 𝑁) and pick out 𝐴<, 𝐴!#
and 𝐴!! as the values to Equation (12), doing so implies

(5𝐴!#𝐴!!)! ≡ (113𝐴<)!	(mod	𝑁)
and thus gcd(5𝐴!#𝐴!! − 113𝐴<, 𝑁) = 3119 is a proper factor of 𝑁.
From Table 1, we can see that it really only depends on the ease of
application. For the P method, if we see two equivalent 𝑄&∗ ’s whose 𝑛
are close to each other (“close” is up to the reader’s discretion), it will
be efficient; we can also use the P method for more than two 𝑄&∗ ’s, it
will just take a longer calculation, which is where the A method
becomes more beneficial, since it requires simpler calculations.
However, to calculate the values needed for the A method is arguably
harder than calculating the values needed for the P method because
Equation (11) is a quadratic equation.

V. MORRISON AND BRILLHART
Morrison and Brillhart reprised the A method of the CFRAC discovered
by Lehmer and Powers and improved it by using Gaussian elimination
on vectors of exponents modulo 2. Before exploring how they used
Gaussian elimination, we introduce the concept of smoothness of
numbers:

Definition 5.1. A positive integer is 𝐵-smooth if there exists 𝐵 ∈ ℕ
such that the integer’s prime factors are all less than or equal to 𝐵.
These were the steps Morrison and Brillhart took in order use vectors:
1. Recall that some of the 𝑄&s were composite. Pick an upper bound

𝐵 ∈ ℕ.

2. Keep the 𝑄&∗ s whose 𝑄&s factored into primes less than or equal
to 𝐵. In other words, we want to find the 𝑄&s that are 𝐵-smooth.

3. Those primes form a set called the factor base. For convenience,

we add -1 as a “prime” into the factor base because we want to
square the 𝑄&∗ s.

 180

4. When 𝑄& is 𝐵-smooth, define the vector �⃗�& whose entries are
made up of the multiplicity modulo 2 of those prime factors. That
is, if the prime factors of 𝑄& are ordered and the 𝑖-th prime has an
even or odd power, then the 𝑖-th entry of �⃗�& is 0 or 1 respectively.

5. Form a matrix whose rows are the �⃗�&s for which 𝑄& is 𝐵-smooth.

6. Since {0,1} ∈ ℤ!, these are the only possible coefficients for our

linear combinations.

7. Let 𝑆 be the set of 𝑖 for which �⃗�% is in dependency. Then ∏%∈C

𝑄&∗ = 𝑦! for some 𝑦 ∈ 𝑍.

8. Let 𝑥 = ∏ 𝐴&+#%∈C 	 (mod	𝑁), then we get 𝑥! ≡ 𝑦!	(mod	𝑁),

which by Equation (15) leads to an instance of Theorem 3.1.

Let’s use this algorithm on 𝑁 = 13290059. Again, I will replicate the
work done in the resources provided but give more details. Choose our
upper bound 𝐵 = 113 and find all primes less than or equal to 113
(there are 30 in total). Choose our factor base to be the set
{−1,2,5,31,43,53,113}. Observe that we could’ve added other primes
in such as 3 or 7 but notice that those primes never occurred in Table 1,
implying that they rarely or never occur in the factorisations of the 𝑄&s.
Thus, using them is redundant.

We now want to choose 𝑛 such that the factorisation of 𝑄& gives us
prime factors in the factor base. For example, we do not want to choose
𝑄! because 2017 is not in our factor base; had 41 been in the factor base,
we could’ve chosen 𝑄4.

Let’s choose 𝑄#", 𝑄!$, 𝑄!', 𝑄$# and 𝑄<", referring back to Table 1 for
their factorisations. We can choose more, but keep in mind that we want
more rows than columns in our matrix.

𝑛/factor base −1 2 5 31 43 53 113
10 0 0 0 1 1 0 0 = �⃗�#"

 181

23 1 1 0 0 0 0 1 = 𝑣!$
26 0 1 0 1 0 1 0 = 𝑣!'
31 1 1 0 0 0 0 1 = 𝑣$#
40 0 1 0 0 1 1 0 = 𝑣<"

 Table 2: Factor base and the 𝑣(s
We now construct the 5 x 7 matrix whose rows are made up of the �⃗�&s:

⎣
⎢
⎢
⎢
⎡
0 0 0 1 1 0 0
1 1 0 0 0 0 1
0 1 0 1 0 1 0
1 1 0 0 0 0 1
0 1 0 0 1 1 0⎦

⎥
⎥
⎥
⎤
 

Here, we see that the first, third and fifth rows are linearly dependent
and the second and fourth rows are linearly dependent. The first
dependency gives
(6700527 ⋅ 11455708 ⋅ 3213960)! ≡ (2 ⋅ 31 ⋅ 43 ⋅ 53)!	(mod	𝑁),

but neither
gcd	((6700527 ⋅ 11455708 ⋅ 3213960)! − (2 ⋅ 31 ⋅ 43 ⋅ 53)!, 𝑁)

nor
gcd	((6700527 ⋅ 11455708 ⋅ 3213960)! + (2 ⋅ 31 ⋅ 43 ⋅ 53)!, 𝑁)

factor N. The second dependency gives
(1914221 ⋅ 1895246)! ≡ (2 ⋅ 5 ⋅ 113)!	(mod	𝑁).

We, then, have
gcd	((1914221 ⋅ 1895246)! − (2 ⋅ 5 ⋅ 113)!, 𝑁) = 4261

and
gcd	((1914221 ⋅ 1895246)! + (2 ⋅ 5 ⋅ 113)!, 𝑁) = 3119.

These are the proper factors of 𝑁.
We now present the algorithm:
Algorithm 1 CFRAC
1: procedure
2: input: a composite integer N
3: Choose your factor base and an upper bound 𝐵.
4: 𝑝" ← 0.
5: 𝑅 ← 0.
6: 𝑖 ← 0.

 182

7: while R < K + 10 do
8: Compute 𝑃%, 𝑄%∗, 𝑞% and 𝐴%+#	(mod	𝑁).
9: if 𝑄%∗ is factored using primes in the factor base then	
10: Save 𝑖, 𝑄%∗ and 𝐴%+#	(mod	𝑁) in a file
11: 𝑅 ← 𝑅 + 1.
12: 𝑖 ← 𝑖 + 1.
13: Form the matrix whose rows are the vectors �⃗�%.
14: Find linear dependencies amoung the �⃗�%’s.
15: Let 𝑆 = {𝑖 ∈ ℕ:𝑄% 	factors into primes in the factor base, ∏ �⃗�%%∈C =

0}.

16: for each dependency ∏ �⃗�%%∈C = 0 do
 17: 𝑦! = ∏ 𝑄&∗%∈C and 𝑥 = ∏ 𝐴&+#%∈C 	 (mod	𝑁).

18: if If gcd(𝑥 − 𝑦,𝑁) is a proper factor of N then
 19: break

20: Output: a factor of 𝑁.

VI. FINAL REMARKS
The time complexity on the algorithm presented by Morrison and
Brillhart is 𝑂 E𝑒D!log&⋅log(log&)F134. Even though this is exponential time,
the log𝑛 prevents the running time from growing too big in proportion
to the size of 𝑛. Recall that the A method and P method are the
foundations to the CFRAC; indeed, they are related by the following
theorem:

Theorem 6.1. The A method successfully yields a factor of 𝑁 if and
only if the P method successfully yields a factor of 𝑁.
To prove this, we need a lemma:

Lemma 6.2. For 𝑘 ≥ 2, we have

134 Pomerance, Carl (December 1996). "A Tale of Two Sieves" (PDF). Notices of the AMS. 43
(12). pp. 1473-1485

 183

𝑃(+ (−1)(𝐴(+#𝐴(+! ≡ 0	(mod	𝑁).
Proof. Of Lemma 6.2. We prove this by induction on 𝑘.
Base case 𝑘 = 2:

𝑃! + 𝐴#𝐴" = (𝑞#𝑄# − 𝑃#) + (𝑞"𝑞# + 1)𝑞"									
= 𝑞#(𝑁 − 𝑞"!) − 𝑞" + (𝑞"𝑞# + 1)𝑞"
≡ 0	(mod	𝑁).																																									

Induction hypothesis: Suppose the lemma is true for 𝑛 − 1. So
𝑃&+# + (−1)&+#𝐴&+!𝐴&+$ ≡ 0	(mod	𝑁).

Induction step: Since 𝑃& = 𝑞&+#𝑄&+# − 𝑃&+#, we have
0 ≡ 𝑃&+# − 𝑄&+#𝑞&+# + (−1)&+#𝐴&+!𝐴&+$ + 𝑄&+#𝑞&+#

≡ −𝑃& + (−1)&+#𝐴&+!(𝐴&+$ + 𝐴&+!𝑞&+#)																					
≡ −𝑃& + (−1)&+#𝐴&+#𝐴&+!	(mod	𝑁).																															

�
Proof of Theorem 6.1. Assume the contrapositive: that the P method
fails. Then, 𝑁 divides either 𝑥𝑃%/#𝑃%/$…𝑃1+# ± 𝑦𝑃%/!𝑃%/<. . . 𝑃1.
Substituting the equation from Lemma 6.2 into the 𝑃%’s appropriately
and simplifying imply that N divides either 𝑥𝐴%+# ± 𝑦𝐴1+#, which
means the A method fails. The converse is true by reversing the above
argument.

